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Link between Kendall’s tau and copulas

Sklar’s theorem:

∀x = (x1, x2) ∈ R2, FX(x) = C
(
F1(x1), F2(x2)

)
,

Kendall’s tau:

τ1,2 = τ (C) := 4
∫

[0,1]2
C(u, v)dC(u, v)− 1

= IP
(
(X1,1 − X2,1)(X1,2 − X2,2) > 0

)
− IP

(
(X1,1 − X2,1)(X1,2 − X2,2) < 0

)
= IP

(
(X1,1:2 ,X2,1:2) is a concordant pair

)
− IP

(
(X1,1:2 ,X2,1:2) is a discordant pair

)
,

where X1,1:2 ,X2,1:2
i.i.d.∼ FX.
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Conditional Kendall’s tau: a measure of conditional
dependence

Conditional Kendall’s tau between X1 and X2 given Z = z:

τ1,2|Z=z := τ (CX|Z=z) = IP
(
(X1,1 − X2,1)(X1,2 − X2,2) > 0

∣∣Z1 = Z2 = z
)

− IP
(
(X1,1 − X2,1)(X1,2 − X2,2) < 0

∣∣Z1 = Z2 = z
)
,

where (X1,1:2,Z1,1:p) and (X2,1:2,Z2,1:p) are two i.i.d. copies of a random vector
(X,Z) ∈ R2+p.
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Figure: The “simplifying assumption”: Z
has an influence on the conditional margins
X1 andX2, but not on the conditional depen-
dence between them.
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Figure: The general case: Z has an influ-
ence on the conditional margins X1 and X2,
and also on their conditional dependence.

Goals

I Modeling the influence of Z on the dependence between X1 and X2
I with a conditional dependence parameter that always exists
I and is invariant by changes of margins and scales.

A kernel-based estimator

For a sample (Xi,1,Xi,2,Zi), i = 1, . . . , n,

τ̂1,2|Z=z :=

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)×
(
1
{

(Xi,1 − Xj,1)(Xi,2 − Xj,2) > 0
}

− 1
{

(Xi,1 − Xj,1)(Xi,2 − Xj,2) < 0
})
,

where wi,n(z) := Kh(Zi − z)/
∑n

j=1Kh(Zj − z) for a kernel K on Rp and a
bandwidth h > 0.
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Figure: Conditional
Kendall’s tau between
detrended electricity
consumption and de-
trended temperature
given the day of the
year (h∗,1 = 12 days)
and the time of the day
in hours (h∗,2 = 1 hour).

Kendall’s regression: a parametric model for the
conditional Kendall’s tau

I We want to estimate the true parameter β∗ ∈ Rp′ in our model

∀z ∈ Z, Λ
(
τ1,2|Z=z

)
= ψ(z)Tβ∗,

in the high-dimensional case, i.e. p′ is large.
I We observe an iid sample D = (Xi,1,Xi,2,Zi) but not a sample of τ1,2|Zi

⇒ we need estimated Kendall’s tau τ̂1,2|Z=z for some values of z.

Algorithm 1: Estimation algorithm for β∗

First sample: (Xi,Zi)
i.i.d.∼ (X,Z), i = 1, . . . , n ;

Second sample: Z′i, i = 1, . . . , n′ (design points) ;
for i← 1 to n′ do
Compute the conditional Kendall’s tau τ̂1,2|Z=Z′i on the first sample ;
end
Solve the convex optimization program

β̂ := arg min
β∈Rp′

 1
n′

n′∑
i=1

(
Λ(τ̂1,2|Z=Z′i)−ψ(Z′i)

Tβ
)2

+ λ|β|1

 ,
Summary of theoretical results

I Nonasymptotic bounds on |τ̂1,2|Z=z − τ1,2|Z=z| for a given z (resp. uniform in
z under stronger assumptions)

I Consistency, uniform consistency and asymptotic normality of τ̂1,2|Z=z as
n→∞

I Nonasymptotic bounds on |β̂ − β|
I Consistency and asymptotic normality of β̂ in two di�erent regimes:

(n→∞, n′ fixed) and (n, n′)→ (∞,∞).

A classification point-of-view

I Defining W1,2 := 2× 1{(X2,1 − X1,1)(X2,2 − X1,2) > 0} − 1,
we have τ1,2|Z=z = 2× p(z)− 1, where p(z) := IP(W = 1|Z1 = Z2 = z).

I Prediction of concordance/discordance among pairs of observations
(X1,X2) given Z ' a classification task of such pairs.

I Evaluate conditional probabilities of observing concordant pairs of
observations ' evaluate conditional Kendall’s tau: τ̂1,2|Z=z = 2p̂(z)− 1

I ⇒ most classifiers can potentially be invoked, but applied here to a dataset
D̃ of (weighted) pairs of observations:

D̃ := (Wk, Z̃k,Vk)k∈{1,...n(n−1)/2} ∈
(
{−1, 1} × Rp × R+

)n(n−1)/2

• Binary variable: Wk = Wi,j := 2× 1{(Xi,1 − Xj,1)(Xi,2 − Xj,2) > 0} − 1
• Average covariate: Z̃k = (Zi + Zi)/2
• Weight of the pair: Vk = Kh(Zi − Zj)
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Figure: Estimated conditional Kendall’s tau between French and German daily stock returns
given the intraday volatility σ := (High − Low)/Close during the European debt crisis (2009-
2012) (le�) and during the following period (2012-2019).
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