On machine learning methods for the estimation

of conditional Kendall’s tau
Alexis Derumigny, CREST - ENSAE, Palaiseau (France)

Link between Kendall’s tau and copulas J

Sklar’s theorem:
Vx = (x1,X%) € RZ, Fx(x) = C(F1(X1)>F2(X2))7

Kendall’s tau:

T2 =T(C) = 4/ Clu,v)dC(u,v) — 1
0,1]°

= ]P((X1,1 — Xz,l)(Xl,z — Xz,z) > 0) — ]P((X1,1 — X2,1>(X1,2 — Xz,z) < 0)
— IP((XLLZ , X3.1.2) is a concordant pair)
— IP((XLLZ , X5.1.2) is a discordant pair),

i.i.d.
where X1,1:27X2,1:2 ~ Fx.
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Conditional Kendall’s tau: a measure of conditional
dependence

Conditional Kendall’s tau between X; and X, given Z = z:

T1,2|1Z=2 -— T(CX|Z=z) — ]P((X1,1 — Xz,l)(X1,2 — Xz,z) > 0 ‘ 1,=1,;= Z)
— ]P((X1,1 — X1)(Xi2 — X22) <0 | 1,=1,;= Z))

where (X 12,21 1.») and (X312, Z3 1.5) are two i.i.d. copies of a random vector

(X,Z) € R**?,
Z 72—
Figure: The “simplifying assumption”™ Z

Figure: The general case: Z has an influ-
has an influence on the conditional margins

ence on the conditional margins X; and X,
X; and X5, but not on the conditional depen-  and also on their conditional dependence.
dence between them.

Goals J

Modeling the influence of Z on the dependence between X; and X,
with a conditional dependence parameter that always exists
and is invariant by changes of margins and scales.

A kernel-based estimator J

For a sample (Xi1, Xi2,Z;),i=1,...,n,

Froze = > Win(2)wa(2) X (1{(x,.,1 — X1)(Xin — Xi2) > 0)

=1 j=1
— 1{(Xi;1 — X1)(Xi2 — Xj2) < O})7

where w; ,(z) := Ky(Z; — z)/ >, Kn(Z; — z) for a kernel K on R? and a
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Kendall’s regression: a parametric model for the
conditional Kendall’s tau

We want to estimate the true parameter 8* € R? in our model

Vz & Z7 A(Tl,Z\Z:z) — w(Z)Tﬁ*7

in the high-dimensional case, i.e. p’ is large.
We observe an iid sample D = (X 1, X2, Z;) but not a sample of T1,2|Z,
= we need estimated Kendall’s tau 74 57—, for some values of z.

Algorithm 1: Estimation algorithm for 3*

First sample: (X, Z;) o (X,Z),i=1,...,n;

Second sample: Z, i=1,...,n (design points);

fori+ 1ton do

Compute the conditional Kendall’s tau 7; 57—z on the first sample ;
end

Solve the convex optimization program

B := arg min
BeRY

%Z (MF1z-2) — Y(Z)"8)" + Bl | .

Summary of theoretical results

Nonasymptotic bounds on |7 57—, — 7172,22Z| for a given z (resp. uniform in
z under stronger assumptions)

Consistency, uniform consistency and asymptotic normality of 7; 57—, as
n— oo

Nonasymptotic bounds on |3 — f|

Consistency and asymptotic normality of 3 in two different regimes:
(n — oo, n’ fixed) and (n, n’) — (00, ).

A classification point-of-view

Defining Wi, =2 X 1{(Xo1 — X1.1)(Xo — X12) > 0} — 1,

we have 7y 57, = 2 X p(z) — 1, where p(z) = P(W = 1|Z, = Z, = z).
Prediction of concordance/discordance among pairs of observations

(X1, X,) given Z ~ a classification task of such pairs.

Evaluate conditional probabilities of observing concordant pairs of
observations ~ evaluate conditional Kendall’s tau: 71 37, = 2p(z) — 1

= most classifiers can potentially be invoked, but applied here to a dataset
D of (weighted) pairs of observations:

~

D = (Wi, Z, Viketr...nn1)/2) € ({—1,1} x RP x R+)n(n_1)/2

Binary variable: Wk~: Wi,j =2 X 1{(Xi,1 — )<] 1)(Xi,2 — )(j)g) > O} — 1
Average covariate: Zy = (Z;,+ Z;) /2
Weight of the pair: Vi = Ky(Z; — Z))
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Figure: Estimated conditional Kendall’s tau between French and German daily stock returns
given the intraday volatility ¢ := (High — Low)/Close during the European debt crisis (2009-
2012) (left) and during the following period (2012-2019).
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