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Handling informative documents with agility is a key step for the Fo.r each step of the plpelme, features were extracted with VGG-16 e o

insurance industry to face the ongoing digital transformation. More using the weights trained on ImageNet S FE o Rendom | | cross-out / clean
precisely, the idea behind is to automate document onboarding, sorting B M e —

analysis, and make business workflows more efficient and effective. menD || P | STAdEN L | Signed / unsigned

This implies, recognition of some typical pages or documents in a pdf e

classification), detecting region of interests in those pages, (object 286 i . - 0 -

getection), re)ading info?mat?on with a customized mogelg( ret(rai#ed | Mg‘ t ?:5&‘ . 25 088 (I\;Arggselez-gﬁ Cﬁ:ﬂig elcer? ri?jvre t\,(\),r:netfd r;ggf Soor;eusas;ger;egs ch?]sSiesneodr
OCR models), signature detection, crossed-out detection, ... VP )

. . . or crossed-out.
In this work we present a solution built at AXA to handle a type of
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insurance document called RSE which is used for life insurance T fally connected+ReLU RESULTS

contractualization. The goal was to automate at least 80% of the | S ceiSon aced

incoming flow. Signhed - agent 100% 99.9%
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The overall document processing is composed of 4 steps: =S Unsigned -customer 74% 100%
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- detect automatically the region of interest (ROI) S veans = = rorest Clause 09% 00%
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- match information from OCR with business database
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We used clustering to label our dataset (each cluster are then checked
manually). We then trained a classifier with the following results in terms
of precision and recall:

To enhance OCR quality, we finetuned Tesseract V4 ‘fra_best’ model
for each region of interest. By retraining, we try to learn a model which
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Y i _ﬁ___ _ :...::,:: OBJECT DETECTION (OD) This work is a first attempt to fully automate the contractualization
p—— —_— process in the insurance field. The idea was to use object detection,
e Following the page classification step, we then needed to extract the classification models, OCR to check completeness, detection of region
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e LT D S . Signature This figure illustrates two pages from the same class but where the text > GUCIhliy SEleslel lsanitness (EMies sietlel el i
y e 2&@ detection size variation moved the signatures to different locations. cIa§S|f|cat|on, §|gnature and crossed-oqt detectlong. _
| o Thus, we have to use an object detection model to detect those areas. *  Object detection model was made using an old implementation.
el e s The model used was a Faster-RCNN Retraining another model object detection model with a more
Vet s oo T e s e o o< Crossed-out recent implementation could be interesting.
Faita e Signature . . ' .
9 detection * Pre-processing can be improved while addressing background
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