alllasc llall asala

King Abdullah University of
Science and Technology

THE UNIVERSITY
of EDINBURGH

%'))),

The Problem

Consider distributed optimization problem

min : —, ' + R(z), (1)

rER4

where f;(x) for ¢ = 1,...,n are stored on i-th computing
node and given as

filz) = %Z fii(z); m is large. (2)
j=1

e 1 is the number of nodes,
e m is the number of functions stored on each node,

® R(x) is a proper closed convex regularizer.

Quantization

Communication between computing nodes is often much more
costly than local computations. We perform compression of com-
municated vectors via quantization.

Definition (w-quantization)

A random operator @ : R? — R with the properties
2 2
EQ@) =2 E[lQ@)3] < w+1)zl;

for all x € R? is a w-quantization operator.

Example 1 (Random Dithering).

| |z;]
Qa) = [lz[l, - - -sign(z) o, a; = |s - &

for random vector & ~y,. [0,1]¢, parameter p > 1, levels of
rounding s € {1,2,3,...}, where |z||, is a pnorm of z, o is a
Hadamard product. Random dithering is an w-quantization for

1/p 1/2
w_0<d +d )
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Example 2 (Random Sparsification).

d
Qz) = - ow

for random variable € ~n., {y € {0,1}" lylly = r} and
sparsity parameter r € {1,...,d}. Random sparsification is an
w-quantization for

d

w=——1.
r

Example 3 (Block Quantization). The vector z € R? is first
t

v ], v € RY S d; = d. Then
i=1

cach block v; is quantized using random ditheri;lg with p = 2,
s = 1. Block quantization is an w-quantization for

_ d+ 1.
C T ey Ve,

split into ¢ blocks: x' = [v;,. ..
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DIANA with Variance Reduction

Motivated by the idea of compressed gradient differences |1], we
propose the first variance reduced method for solving
(1) and (2) that only computes gradients of f;;(x)
and exchanges only quantized vector updates among
workers.

Algorithm 1 VR-DIANA based on L-SVRG (Variant 1), SAGA

(Variant 2)

1. Input: learning rates @« > 0 and ~v > 0, initial vectors
0 1,0 0 30 _ 1 0
ZC,hl,...,hn,h :ﬁ ?:1}?/,&

¢ _ J 1, with probability L

3: sample random u | N .
0, with probability 1 — -
4 broadcast ¥, u* to all workers
5: for:=1,...,ndo > worker side
6: pick random ¥ ~ .. {1,...,m}
=AY V)
7=1
8: g7 = vfz'jf(xk) - vfijf(wfjf) +
0 AV = Q(gy — hy)
10: hith = hE 4 oAl
11: forj=1,..., mdo
12 > Variant 1 (L-SVRG): update epoch
13: gradient if u* = 1
- zF ifub =1
w2]7 |f U = O
15: > Variant 2 (SAGA): update gradient table
lf—l-l L 'Tk7 .] — ]’Lk
wij? J 7é Ji
17: end for
18: end for .
19: g" = h" + % ST AP > gather quantized updates
i=1
k41

0. " = prox, gz — v¢")
1. REtl — pk 4« f: AF
| T

22 end for

Experiments: Different Stepsizes o

10—11

0 20 40 60 80 0 10 20 30 40 50 60
Data passes Data passes
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Figure 1: Comparison of VR methods with different parameter « for solving
gisette with block size 2000, fo-penalty A9 = 2 - 10_1, and ¢o random
dithering.

Convergence of VR-DIANA

We make the following technical assumptions:

Assumption 1. Functions f;; : R? — R are L-smooth.

Assumption 2. Functions f;; : R? — R are convex.

Assumption 3. Function f : R? — R is p-strongly convex
for > 0.

Further by x* we denote the optimal solution of (1).

Theorem 1 (Strongly convex case)

Let Assumptions 1, 2 and 3 hold. Let v = I +36(L Oy

L Then the number of iterations VR-DIANA needs to

w+1"
achieve precision E [Hazk — ZE*H%} < e is

(9((/@ | had | m+w) logl).
n £

Further let £ be a randomly chosen iterate of Algorithm 1, i.e.

x ~y {:1:0, :1:1, L. ,:z:k_l}.

Theorem 2 (Convex case)

Let Assumptions 1 and 2 hold. Let v = T (1136@ Nt o=

L Then the number of iterations VR-DIANA needs to

w+1"
achieve precision E [f(z%) — f(x*)] < e is

(1+5) v+

€

where By(z,y) = f(z)— f(y)—(Vf(y), z — y) is a Bregman

divergence.

O

Theorem 3 (Non-convex case)

Let Assumption 1 hold and R 0. Let v+ =

: /21 o= ﬁ Then the number of iterations
10L(14+2) " (m?3+w+1) w

VR-DIANA needs to achieve precision E NV f(z%) Hg} < eis

1/2 1n2/3
O<(1+g) m +°">.
mn &
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Experiments: Comparison with Existing

Methods
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Figure 2: Comparison of VR-DIANA, Diana-SGD [1], QSVRG [2| and

TernGrad-Adam with n = 12 workers on real-sim in suboptimality (left)

(b) Real-sim, \y = 6-107°

and distance from the optimum (right). £~ dithering is used for every method
except for QSVRG, which uses ¢ dithering.
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Figure 3: Comparison of VR-DIANA and Diana-SGD [1] against QSVRG |2]
on mushrooms and aba in suboptimality (top) and distance to the solution
(bottom).



	References

