
Stochastic Distributed Learning with
Gradient Quantization and Variance Reduction

Samuel Horváth1 Dmitry Kovalev1 Konstantin Mishchenko1 Peter Richtárik1, 2, 3 Sebastian U. Stich4

1KAUST 2University of Edinburgh 3MIPT 4EPFL

The Problem

Consider distributed optimization problem

min
x∈Rd

f (x) := 1
n

n∑
i=1

fi(x)

 + R(x), (1)

where fi(x) for i = 1, . . . , n are stored on i-th computing
node and given as

fi(x) = 1
m

m∑
j=1

fij(x); m is large. (2)

• n is the number of nodes,
•m is the number of functions stored on each node,
•R(x) is a proper closed convex regularizer.

Quantization

Communication between computing nodes is often much more
costly than local computations. We perform compression of com-
municated vectors via quantization.

Definition (ω-quantization)

A random operator Q : Rd→ Rd with the properties
E [Q(x)] = x, E

[
‖Q(x)‖2

2

]
≤ (ω + 1) ‖x‖2

2

for all x ∈ Rd is a ω-quantization operator.

Example 1 (Random Dithering).

Q(x) = ‖x‖p ·
1
s
· sign (x) ◦ α, αi =

s |xi|
‖x‖p

+ ξi


for random vector ξ ∼u.a.r. [0, 1]d, parameter p ≥ 1, levels of
rounding s ∈ {1, 2, 3, . . .}, where ‖x‖p is a p-norm of x, ◦ is a
Hadamard product. Random dithering is an ω-quantization for

ω = O
(
d1/p + d1/2

s

)
.

Example 2 (Random Sparsification).

Q(x) = d

r
· ξ ◦ x

for random variable ξ ∼u.a.r. {y ∈ {0, 1}d : ‖y‖0 = r} and
sparsity parameter r ∈ {1, . . . , d}. Random sparsification is an
ω-quantization for

ω = d

r
− 1.

Example 3 (Block Quantization). The vector x ∈ Rd is first
split into t blocks: x> = [v>1 , . . . , v>t], vi ∈ Rdi,

t∑
i=1
di = d. Then

each block vi is quantized using random dithering with p = 2,
s = 1. Block quantization is an ω-quantization for

ω = max
i∈{1,...,t}

√
di + 1.

DIANA with Variance Reduction

Motivated by the idea of compressed gradient differences [1], we
propose the first variance reduced method for solving
(1) and (2) that only computes gradients of fij(x)
and exchanges only quantized vector updates among
workers.
Algorithm 1 VR-DIANA based on L-SVRG (Variant 1), SAGA
(Variant 2)

1: Input: learning rates α > 0 and γ > 0, initial vectors
x0, h0

1, . . . , h
0
n, h0 = 1

n

∑n
i=1 h

0
i

2: for k = 0, 1, . . . do

3: sample random uk =

1, with probability 1
m

0, with probability 1− 1
m

4: broadcast xk, uk to all workers
5: for i = 1, . . . , n do . worker side
6: pick random jki ∼u.a.r. {1, . . . ,m}
7: µki = 1

m

m∑
j=1
∇fij(wk

ij)

8: gki = ∇fijki (x
k)−∇fijki (w

k
ijki

) + µki

9: ∆̂k
i = Q(gki − hki)

10: hk+1
i = hki + α∆̂k

i

11: for j = 1, . . . ,m do
12: . Variant 1 (L-SVRG): update epoch
13: gradient if uk = 1

14: wk+1
ij =

x
k, if uk = 1
wk
ij, if uk = 0

15: . Variant 2 (SAGA): update gradient table

16: wk+1
ij =

x
k, j = jki
wk
ij, j 6= jki

17: end for
18: end for
19: gk = hk + 1

n

n∑
i=1

∆̂k
i . gather quantized updates

20: xk+1 = proxγR(xk − γgk)
21: hk+1 = hk + α

n

n∑
i=1

∆̂k
i

22: end for

Experiments: Different Stepsizes α

0 20 40 60 80
Data passes

10 11

10 8

10 5

10 2

101

f(x
)

f*

10 2 1

10 1 1

0.5 1

2 1

(a) SAGA

0 10 20 30 40 50 60
Data passes

10 15

10 12

10 9

10 6

10 3

100

f(x
)

f*

10 2 1

10 1 1

0.5 1

2 1

(b) L-SVRG

Figure 1: Comparison of VR methods with different parameter α for solving
gisette with block size 2000, `2-penalty λ2 = 2 · 10−1, and `2 random
dithering.

Convergence of VR-DIANA

We make the following technical assumptions:
Assumption 1. Functions fij : Rd→ R are L-smooth.
Assumption 2. Functions fij : Rd→ R are convex.
Assumption 3. Function f : Rd→ R is µ-strongly convex
for µ > 0.
Further by x∗ we denote the optimal solution of (1).

Theorem 1 (Strongly convex case)

Let Assumptions 1, 2 and 3 hold. Let γ = 1
L(1+36(ω+1)/n),α =

1
ω+1. Then the number of iterations VR-DIANA needs to
achieve precision E

[
‖xk − x∗‖2

2

]
≤ ε is

O
((
κ + κ

ω

n
+ m + ω

)
log 1

ε

)
.

Further let xa be a randomly chosen iterate of Algorithm 1, i.e.
xa ∼u.a.r. {x0, x1, . . . , xk−1}.

Theorem 2 (Convex case)

Let Assumptions 1 and 2 hold. Let γ = 1
2L
√
m(1+36(ω+1)

n), α =
1

ω+1. Then the number of iterations VR-DIANA needs to
achieve precision E [f (xa)− f (x∗)] ≤ ε is

O


(
1 + ω

n

)√
m + ω√

m

ε

 ,
whereBf(x, y) = f (x)−f (y)−〈∇f (y), x− y〉 is a Bregman
divergence.

Theorem 3 (Non-convex case)

Let Assumption 1 hold and R ≡ 0. Let γ =
1

10L(1+ω
n)

1/2
(m2/3+ω+1)

, α = 1
ω+1. Then the number of iterations

VR-DIANA needs to achieve precision E
[
‖∇f (xa)‖2

2

]
≤ ε is

O
((

1 + ω

n

)1/2 m2/3 + ω

ε

)
.

References

[1] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter
Richtárik. Distributed learning with compressed gradient differences.
arXiv preprint arXiv:1901.09269, 2019.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vo-
jnovic. QSGD: Communication-efficient SGD via gradient quantization
and encoding. In Advances in Neural Information Processing Systems,
pages 1709–1720, 2017.

Experiments: Comparison with Existing
Methods

0 50 100 150 200
Time, minutes

10 11

10 9

10 7

10 5

10 3

10 1

f(x
t)

f(x
*)

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD
ADAM

(a) Real-sim, λ2 = 6 · 10−5

0 50 100 150 200
Time, minutes

10 10

10 8

10 6

10 4

10 2

100

||x
t

x
||2

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD
ADAM

(b) Real-sim, λ2 = 6 · 10−5

Figure 2: Comparison of VR-DIANA, Diana-SGD [1], QSVRG [2] and
TernGrad-Adam with n = 12 workers on real-sim in suboptimality (left)
and distance from the optimum (right). `∞ dithering is used for every method
except for QSVRG, which uses `2 dithering.

0 2 4 6 8 10
Time, seconds

10 15

10 11

10 7

10 3

f(x
t)

f(x
*)

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(a) Mushrms,λ2 = 6·10−4

0 20 40 60
Time, seconds

10 15

10 11

10 7

10 3

f(x
t)

f(x
*)

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(b) Mushrms,λ2 =6·10−5

0 10000 20000 30000 40000
Iteration

10 20

10 15

10 10

10 5

100

||x
t

x
||2

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(c) Mushrms,λ2 =6·10−4

0 50000100000150000200000250000
Iteration

10 17

10 14

10 11

10 8

10 5

10 2

||x
t

x
||2

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(d) Mushrms,λ2 = 6·10−5

0 1 2 3 4 5
Time, seconds

10 7

10 5

10 3

10 1

f(x
t)

f(x
*)

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(e) a5a,λ2 = 5 · 10−4

0 10 20 30 40
Time, seconds

10 7

10 5

10 3

10 1

f(x
t)

f(x
*)

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(f) a5a,λ2 = 5 · 10−5

0 5000 10000 15000 20000
Iteration

10 6

10 4

10 2

100

||x
t

x
||2

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(g) a5a,λ2 = 5 · 10−4

0 100000 200000 300000
Iteration

10 6

10 4

10 2

100

||x
t

x
||2

QSVRG
Diana-SVRG
Diana-SAGA
Diana-LSVRG
Diana-SGD

(h) a5a,λ2 = 5 · 10−5

Figure 3: Comparison of VR-DIANA and Diana-SGD [1] against QSVRG [2]
on mushrooms and a5a in suboptimality (top) and distance to the solution
(bottom).

	References

